


Chapter

4
Concurrency

When it comes to concurrency, we are living the proverbial interesting times more than

ever before. Interesting times come in the form of a mix of good and bad news that

contribute to a complex landscape of tradeoffs, forces, and trends.

The good news is that density of integration is still increasing by Moore’s law; with

what we know and what we can reasonably project right now, that trend will continue

for at least one more decade after the time of this writing. Increased miniaturization

begets increased computing power density because more transistors can be put to work

together. Since components are closer together, connections are also shorter, which

means faster local interconnectivity. It’s an efficiency bonanza.

Unfortunately, there are a number of sentences starting with “unfortunately” that

curb the enthusiasm around increased computational density. For once, connectivity is

not only local—it forms a hierarchy [12]: closely connected components form units that

must connect to other units, forming larger units. In turn, the larger units also connect

to other larger units forming even larger functional blocks, etc. Connectivity-wise, such

larger blocks remain “far away” from each other. Worse, increased complexity of each

block reclaims increased complexity of connectivity between blocks, which is achieved

by reducing the thickness of wires and the distance between them. That means an in-

crease of resistance, capacity, and crosstalk. Resistance and capacity worsen propaga-

tion speed in the wire. Crosstalk is the propensity of the signal in one wire to propagate

to a nearby wire by (in this case) electromagnetic field. At high frequencies, a wire is just

an antenna and crosstalk becomes so unbearable that serial communication increas-

ingly replaces parallel communication (a somewhat counterintuitive phenomenon vis-

ible at all scales—USB replaced the parallel port, SATA replaced PATA as the disk data

connector, and serial buses are replacing parallel buses in memory subsystems, all be-

cause of crosstalk. Where are the days when parallel was fast and serial was slow?)
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Also, the speed gap between processing elements and memory is also increasing.

Whereas memory density has been increasing at predictably the same rate as general

integration density, its access speed is increasingly lagging behind computation speed

for a variety of physical, technological, and market-related reasons [14]. It is unclear

at this time how the speed gap could be significantly reduced, and it is only growing.

Hundreds of cycles may separate the processor from a word in memory; only a few years

ago, you could buy “zero wait states” memory chips accessible in one clock cycle.

The existence of a spectrum of memory architectures that navigate different trade-

offs between density, price, and speed, has caused an increased sophistication of mem-

ory hierarchies; accessing one memory word has become a detective investigation that

involves questioning several cache levels, starting with precious on-chip static RAM and

going possibly all the way to mass storage. Conversely, a given datum could be found

replicated in a number of places throughout the cache hierarchy, which in turn influ-

ences programming models. We can’t afford anymore to think of memory as a big,

monolithic chunk comfortably shared by all processors in a system: caches foster local

memory traffic and make shared data an illusion that is increasingly difficult to main-

tain.

To make us sweat even more, heat issues also join the fray. Increased density means

smaller transistors and consequently lower power draw per transistor, but it also means

more transistors within the same space need to be fed with power, leading to an overall

trend towards increased heat emission. The silicon substrate sustaining the circuitry

needs to dissipate ever larger amounts of heat—another trend that scales the wrong way.

In related, late-breaking news, the speed of light has obstinately decided to stay con-

stant (immutable if you wish) at about 300,000,000 meters per second. The speed of light

in silicon oxide (relevant to signal propagation inside today’s chips) is about two thirds

that; and the speed we can achieve today for transmitting actual data is significantly be-

low that theoretical limit. That spells more trouble for global interconnectivity at high

frequencies. If we wanted to build a 10 GHz chip, under ideal conditions it would take

two cycles just to transport a bit across a 4-centimeter wide chip while essentially per-

forming no computation.

In brief, we are converging towards processors of very high density and huge com-

putational power, that are however becoming increasingly isolated and difficult to reach

and use due to limits dictated by interconnectivity, signal propagation speed, memory

access speed, and heat dissipation. The computing industry is naturally flowing around

these barriers. One phenomenon has been the implosion of the size and power required

for a given computational power; today’s addictive portable digital assistants could not

have been fabricated at the same size and power with technology only five years old.

Today’s trends, however, don’t help traditional computers that want to achieve in-

creased computational power at about the same size. For those, chip makers decided to

give up the battle for faster clock rates, and instead decided to offer computing power

packaged in already-known ways: several identical CPUs connected to each other and

to memory via buses. Thus, within an incredibly short time, the responsibility for mak-
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ing computers faster has largely shifted from the hardware crowd to the software crowd.

More CPUs may seem like an advantageous proposition, but for regular desktop com-

puter workloads it becomes tenuous to gainfully employ more than around eight pro-

cessors. To speed up one given program, a lot of hard programming work is needed to

put those CPUs to good use. Since only a short time ago, taking a vacation is not an

option for increasing the speed of your program.

Computing industry has always had moves and shakes caused by various techno-

logical and human factors, but this time around we seem to be at the end of the rope.

Interesting times indeed.

4.1 Look Ma, No Default Sharing

One startling aspect of the undergoing shift happening in computing is the speed with

which processing and concurrency models are changing, particularly in comparison

and contrast with the pace of development of programming languages; it may take a

decade for a language to become compelling, whereas concurrency matters underwent

several dramatic changes in the same amount of time.

For example, our yesteryear understanding of threading was centered around time-

slicing: one processor uses a timer interrupt in conjunction with a thread scheduler.

Upon each timer interrupt, the scheduler decides which thread gets processor time for

the next time quantum, thus giving the illusion that many threads are running simul-

taneously, when in fact they all use the same processor. In those days, sharing mem-

ory across threads was as straightforward as possible—one thread writes, another reads.

Today, even run-of-the-mill machines have more than one processor, which changes

everything. Furthermore, the notion of sharing becomes increasingly blurred by the ex-

istence of sophisticated cache synchronization protocols. We need to change a lot about

our assumptions on how threads work. Consider the following piece of advice given in

the first edition of the excellent book “Effective Java” [4, Item 51, p. 204]:

When multiple threads are runnable, the thread scheduler determines which

threads get to run and for how long. [...] The best way to write a robust, responsive,

portable multithreaded application is to ensure that there are few runnable threads

at any given time.

The book was written in 2001. One startling detail for today’s observer is that single-

processor, time-sliced threading is not only used, but assumed without stating. Nat-

urally, the second edition1 [5] changes the advice to “ensure that the average number

of runnable threads is not significantly greater than the number of processors.” Inter-

estingly, even that advice, although it looks reasonable, makes a couple of unstated as-

sumptions: one, that there may be high contention between threads; and two, that the

1Even the topic title was changed from “Threads” to Concurrency” to reflect the fact that threads are but

one concurrency model.
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number of processors does not vary dramatically across machines that may execute the

program. As such, the advice is contrary to that given in the “Programming Erlang”

book [3, Ch. 20, p. 363]:

Use Lots of Processes This is important—we have to keep the CPUs busy. All the

CPUs must be busy all the time. The easiest way to achieve this is to have lots of

processes.2 When I say lots of processes, I mean lots in relation to the number of

CPUs. If we have lots of processes, then we won’t need to worry about keeping the

CPUs busy.

Which recommendation is correct? As usually, it all depends. The first recommen-

dation works well on 2001-vintage hardware; the second works well in scenarios of in-

tensive sharing and consequently high contention; and the third works best in low-

contention, high-CPU-count scenarios. Such recommendation closely reflect funda-

mental choices made by the respective languages, and one topic of particular impor-

tance is the approach to memory sharing.

Today’s mainstream imperative languages have been developed in the good old days

of simple memory architectures and straightforward sharing. Naturally, they modeled

the realities of that hardware by defining threads that by default “see” the same memory.

After all, the very definition of multithreading entails that all threads share the same

address space, unlike operating system processes.

As mentioned, today’s deep memory hierarchies are making sharing of memory

across processors an expensive illusion. To ensure that a piece of data written by one

thread is visible by another, a handshake is needed that ensures the data was properly

propagated. Such handshakes slow down both processors involved. Furthermore, since

transfers across the levels of memory hierarchies occur in blocks, the order in which

data is read might not correspond to the order in which data was written. These effects

conspire together to make approaches to programming based on memory sharing ex-

tremely pedestrian and error-prone.

Functional languages deem all mutation as undesirable and strive for “purity” de-

fined as the absence of side effects.

2Erlang processes are distinct from OS processes.
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