


Chapter

4
Concurrency

When it comes to concurrency, we are living the proverbial interesting times more than

ever before. Interesting times come in the form of a mix of good and bad news that

contribute to a complex landscape of tradeoffs, forces, and trends.

The good news is that density of integration is still increasing by Moore’s law; with

what we know and what we can reasonably project right now, that trend will continue

for at least one more decade after the time of this writing. Increased miniaturization

begets increased computing power density because more transistors can be put to work

together. Since components are closer together, connections are also shorter, which

means faster local interconnectivity. It’s an efficiency bonanza.

Unfortunately, there are a number of sentences starting with “unfortunately” that

curb the enthusiasm around increased computational density. For once, connectivity is

not only local—it forms a hierarchy [12]: closely connected components form units that

must connect to other units, forming larger units. In turn, the larger units also connect

to other larger units forming even larger functional blocks, etc. Connectivity-wise, such

larger blocks remain “far away” from each other. Worse, increased complexity of each

block reclaims increased complexity of connectivity between blocks, which is achieved

by reducing the thickness of wires and the distance between them. That means an in-

crease of resistance, capacity, and crosstalk. Resistance and capacity worsen propaga-

tion speed in the wire. Crosstalk is the propensity of the signal in one wire to propagate

to a nearby wire by (in this case) electromagnetic field. At high frequencies, a wire is just

an antenna and crosstalk becomes so unbearable that serial communication increas-

ingly replaces parallel communication (a somewhat counterintuitive phenomenon vis-

ible at all scales—USB replaced the parallel port, SATA replaced PATA as the disk data

connector, and serial buses are replacing parallel buses in memory subsystems, all be-

cause of crosstalk. Where are the days when parallel was fast and serial was slow?)
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Also, the speed gap between processing elements and memory is also increasing.

Whereas memory density has been increasing at predictably the same rate as general

integration density, its access speed is increasingly lagging behind computation speed

for a variety of physical, technological, and market-related reasons [14]. It is unclear

at this time how the speed gap could be significantly reduced, and it is only growing.

Hundreds of cycles may separate the processor from a word in memory; only a few years

ago, you could buy “zero wait states” memory chips accessible in one clock cycle.

The existence of a spectrum of memory architectures that navigate different trade-

offs between density, price, and speed, has caused an increased sophistication of mem-

ory hierarchies; accessing one memory word has become a detective investigation that

involves questioning several cache levels, starting with precious on-chip static RAM and

going possibly all the way to mass storage. Conversely, a given datum could be found

replicated in a number of places throughout the cache hierarchy, which in turn influ-

ences programming models. We can’t afford anymore to think of memory as a big,

monolithic chunk comfortably shared by all processors in a system: caches foster local

memory traffic and make shared data an illusion that is increasingly difficult to main-

tain.

To make us sweat even more, heat issues also join the fray. Increased density means

smaller transistors and consequently lower power draw per transistor, but it also means

more transistors within the same space need to be fed with power, leading to an overall

trend towards increased power draw and consequently heat emission. The silicon sub-

strate sustaining the circuitry needs to dissipate ever larger amounts of heat—another

trend that scales the wrong way.

In related, late-breaking news, the speed of light has obstinately decided to stay con-

stant (immutable if you wish) at about 300,000,000 meters per second. The speed of light

in silicon oxide (relevant to signal propagation inside today’s chips) is about two thirds

that, and the speed we can achieve today for transmitting actual data is significantly be-

low that theoretical limit. That spells more trouble for global interconnectivity at high

frequencies. If we wanted to build a 10 GHz chip, under ideal conditions it would take

two cycles just to transport a bit across a 4-centimeter wide chip while essentially per-

forming no computation.

In brief, we are converging towards processors of very high density and huge com-

putational power, that are however becoming increasingly isolated and difficult to reach

and use due to limits dictated by interconnectivity, signal propagation speed, memory

access speed, and heat dissipation.

The computing industry is naturally flowing around these barriers. One phe-

nomenon has been the implosion of the size and energy required for a given compu-

tational power; today’s addictive portable digital assistants could not have been fab-

ricated at the same size and capabilities with technology only five years old. Today’s

trends, however, don’t help traditional computers that want to achieve increased com-

putational power at about the same size. For those, chip makers decided to give up the

battle for faster clock rates, and instead decided to offer computing power packaged
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in already-known ways: several identical Central Processing Units (CPUs) connected to

each other and to memory via buses. Thus, within an incredibly short time, the respon-

sibility for making computers faster has largely shifted from the hardware crowd to the

software crowd. More CPUs may seem like an advantageous proposition, but for reg-

ular desktop computer workloads it becomes tenuous to gainfully employ more than

around eight processors. Future trends project an exponential expansion of the num-

ber of available CPUs well into the dozens, hundreds, and thousands. To speed up one

given program, a lot of hard programming work is needed to put those CPUs to good

use. Since only a short time ago, taking a vacation is not an option for increasing the

speed of your program.

Computing industry has always had moves and shakes caused by various techno-

logical and human factors, but this time around we seem to be at the end of the rope.

Interesting times indeed.

4.1 A Brief History of Data Sharing

One aspect of the undergoing shift happening in computing is the suddenness with

which processing and concurrency models are changing today, particularly in com-

parison and contrast with the pace of development of programming languages and

paradigms. It takes years and decades for programming languages and their associated

styles to become imprinted into community’s lore, whereas changes in concurrency

matters turned a definite exponential elbow starting around the beginning of the 2000s.

For example, our yesteryear understanding of general concurrency1 was centered

around time-sharing, which in turn originated with the mainframes of the 1960s. Back

then, CPU time was so expensive, it made sense to share the CPU across multiple pro-

grams controlled from multiple consoles so as to increase overall utilization. A process

was and is defined as the state and the resources of a running program. To implement

time-sharing, the CPU uses a timer interrupt in conjunction with a software scheduler.

Upon each timer interrupt, the scheduler decides which process gets CPU time for the

next time quantum, thus giving the illusion that several processes are running simulta-

neously, when in fact they all use the same CPU.

To prevent buggy processes from stomping over one another and over operating sys-

tem code, hardware memory protection has been introduced. In today’s systems, mem-

ory protection is combined with memory virtualization to ensure robust process iso-

lation: each process thinks it “owns” the machine’s memory, whereas in fact a transla-

tion layer from logical addresses (as the process sees memory) to physical addresses (as

the machine accesses memory) intermediates all interaction of processes with memory,

and isolates processes from one another. The good news is that runaway processes can

only harm themselves, but not other processes or the operating system kernel. The less

1The discussion below focuses on general concurrency and does not discuss vector operation paralleliza-

tion and other specialized parallel kernels.
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good news is that upon each task switching, a potentially expensive switching of address

translation paraphernalia also has to occur. And that’s how threads were born.

A thread is a process without associated address translation information—a bare ex-

ecution context: processor state plus stack. Several threads share the address space of a

process, which means that threads are relatively cheap to start and switch among, and

also that they can easily and cheaply share data with each other. Sharing memory across

threads running against one CPU is as straightforward as possible—one thread writes,

another reads. With time-sharing, the order in which data is written by one thread is

naturally the same as the order in which the writes are seen by others. Maintaining

higher-level data invariants is ensured by using interlocking mechanisms such as critical

sections protected by synchronization primitives (such as semaphores and mutexes).

Through the late 20th century, a large body of knowledge, folklore, and anecdotes has

grown around what could be called “classic” multithreaded programming, character-

ized by shared address space, simple rules for memory effect visibility, and mutex-driven

synchronization. Other models of concurrency existed, but classic multithreading was

the most used on mainstream hardware.

Today’s mainstream imperative languages such as C, C++, Java, or C# have been de-

veloped in the classic multithreading days—the good old days of simple memory ar-

chitectures, straightforward data sharing, and well-understood interlocking primitives.

Naturally, languages modeled the realities of that hardware by accommodating threads

that by default “see” the same memory. After all, the very definition of multithreading

entails that all threads share the same address space, unlike operating system processes.

In addition, message-passing APIs (such as the MPI specification [19]) have been avail-

able in library form, initially for high-end hardware such as (super)computer clusters.

During the same historical period, the then-nascent functional languages adopted

a principled position based on mathematical purity: we’re not interested in modeling

hardware, they said, but we’d like to model math. And math for the most part does

not have mutation and is time-invariant, which makes it an ideal candidate for par-

allelization. (Imagine the moment when one of those first mathematicians-turned-

programmers has heard about concurrency—they must have slapped their forehead:

‘Wait a minute!. . . ’) It was well noted in functional programming circles that such a

computational model does inherently favor out-of-order, concurrent execution, but that

potential was more of a latent energy than a realized goal until recent times.

Finally, Erlang was developed starting in the late 1980s as a domain-specific embed-

ded language for telephony applications. The domain required tens of thousands of

simultaneous programs running on the same machine and strongly favored a message-

passing, “fire-and-forget” communication style. Although mainstream hardware and

operating systems were not optimized for such workloads, Erlang initially ran on spe-

cialized hardware. The result was a language that (at the time) oddly combined an im-

pure functional style with heavy concurrency abilities and a staunch message-passing,

no-sharing approach to communication.

Fast forward to the 2010s. Today, even run-of-the-mill machines have more than
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one processor, which has had a number of consequences, the most important being the

failure of seamless shared memory.

One time-shared CPU has one memory subsystem attached to it—with buffers, sev-

eral levels of caches, the works. No matter how the CPU is time-shared, reads and writes

go through the same pipeline; as such, a coherent view of memory is maintained across

all threads. In contrast, multiple interconnected CPUs cannot afford to share the cache

subsystem: such a cache would need multi-port access (expensive and poorly scalable)

and would be difficult to place in the proximity of all CPUs simultaneously. Therefore,

today’s CPUs, almost without exception, come each with its own dedicated cache mem-

ory. The hardware and protocols connecting the CPU+cache combos together are today

a crucial factor influencing multiprocessor system performance.

The existence of multiple caches makes data sharing across threads devilishly dif-

ficult. Now reads and writes in different threads may hit different caches, so sharing

data from one thread to another is not straightforward anymore and, in fact, becomes a

message passing of sorts:2 For any such sharing, a sort of handshake must occur among

cache subsystems to ensure that shared data makes it from the latest writer to the reader

and also to the main memory.

As if times weren’t interesting enough, cache synchronization protocols add one

more twist to the plot: they manipulate data in blocks, not individual word reads and

word writes. This means that communicating processors “forget” the exact order in

which data was written, leading to paradoxical behavior that apparently defies causality

and common sense.

To illustrate the rapid changes in today’s concurrency world and also the heavy in-

fluence of data sharing on languages’ approach to concurrency, consider the following

piece of advice given in the first edition of the excellent book “Effective Java” [4, Item 51,

p. 204]:

When multiple threads are runnable, the thread scheduler determines which

threads get to run and for how long. [...] The best way to write a robust, responsive,

portable multithreaded application is to ensure that there are few runnable threads

at any given time.

The book was published in 2001. One startling detail for today’s observer is that

single-processor, time-sliced threading is not only addressed by the quote above, but

actually assumed without stating. Naturally, the second edition3 [5] changes the advice

to “ensure that the average number of runnable threads is not significantly greater than

the number of processors.” Interestingly, even that advice, although it looks reasonable,

makes a couple of unstated assumptions: one, that there may be high data contention

2This is ironic because shared memory has been faster than message passing in the classic multithreading

days.
3Even the topic title was changed from “Threads” to “Concurrency” to reflect the fact that threads are but

one concurrency model.



46 Chapter 4. Concurrency

between threads, which in turn causes degradation of performance due to interlocking

overheads; and two, that the number of processors does not vary dramatically across

machines that may execute the program. As such, the advice is contrary to that given in

the “Programming Erlang” book [3, Ch. 20, p. 363]:

Use Lots of Processes This is important—we have to keep the CPUs busy. All

the CPUs must be busy all the time. The easiest way to achieve this is to have lots

of processes.4 When I say lots of processes, I mean lots in relation to the number

of CPUs. If we have lots of processes, then we won’t need to worry about keeping

the CPUs busy.

Which recommendation is correct? As usual, it all depends. The first recommenda-

tion works well on 2001-vintage hardware; the second works well in scenarios of inten-

sive data sharing and consequently high contention; and the third works best in low-

contention, high-CPU-count scenarios.

Due to increasing difficulty of sharing memory, today’s trends make data sharing

tenuous and favor functional and message-passing approaches. Not incidentally, recent

years have witnessed an increased interest in Erlang and other functional languages for

concurrent applications.

4.2 Look Ma, No (Default) Sharing

In wake of the recent hardware and software developments, D chose to make a radical

departure from other imperative languages: yes, D does support threads, but they do

not share any mutable data by default—they are isolated from each other. Isolation is

not achieved via hardware as in the case of processes; it is a natural consequence of the

way D is designed.

Such a decision is inspired from functional languages, which also strive to disallow

all mutation and consequently mutable sharing. There are two differences. First, D

programs can still use mutation freely—just that mutable data is not accessible to other

threads. Second, no-sharing is a default choice, not the only one. If you do want to

define data shared across processes, you must qualify its type with shared. Consider,

for example, two simple module-scope definitions:

int perThread;

shared int perProcess;

In C for example, the first definition would introduce a global shared across all

threads; however, in D, perThread has one allocated copy per thread. The value is stored

using an operating system facility known as Thread Local Storage (TLS). The access

speed of TLS-allocated data is dependent upon the compiler implementation and the

4Erlang processes are distinct from OS processes.
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underlying operating system. Generally it is negligibly slower than accessing a regular

global variable in e.g. a C program. If that is a concern, you may want to load the global

into a stack variable in access-intensive loops.

Per-thread variables are very handy as static data inside a function, e.g. for caching

and memoization purposes. Consider:

import std.math;

// Memoized square root function

double sqrt(double value) {

static double lastValue, lastResult;

if (lastValue == value) {

// Computed already, return it

return lastResult;

}

lastValue = value;

return lastResult = std.math.sqrt(value);

}

In C, lastValue and lastResultwould need to be protected because several threads

may invoke sqrt simultaneously and use the same variables. The interlocking logic

slows down things considerably, undermining the motivation for adding the memoiza-

tion. In D, there’s no need for synchronization because each thread will have its own

private copies of lastValue and lastResult.

The global definition shared int perProcess; introduces a value of type shared int,

which corresponds to a global int in a C program. Such a variable is visible to all threads

in the system. The annotation helps the compiler with much more than an indication of

where the variable should be allocated: the language “knows” that perProcess is freely

accessible from multiple threads and forbids naive access to it. For example:

shared int threadsCount;

void bumpThreadsCount() {

++threadsCount; // Error!

// Cannot increment a shared int!

}

What happens? Down at machine level, ‘++threadsCount’ is not an atomic oper-

ation, it’s a read-modify-write operation: threadsCount is loaded into a register, the

register value is incremented, and then threadsCount is written back to memory. For

the whole operation to be correct, these three steps need to be performed as an indi-

visible unit. The correct way to increment a shared integer is to use whatever special-
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ized atomic increment primitives the processor offers, which is portably packaged in the

std.concurrency module:

import std.concurrency;

shared int threadsCount;

void bumpThreadsCount() {

// std.concurrency defines atomicAdd(ref shared int, int)

atomicAdd(threadsCount, 1); // fine

}
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