
6.8. One Root to Rule Them All 205

int opCmp(Object rhs);

static Object factory(string classname);

}

Let’s look closer at the semantics of each of these symbols.

6.8.1 string toString()

This returns a textual representation of the object. By default it returns the class name:

// File test.d

class Widget {}

unittest {

assert((new Widget).toString() == "test.Widget");

}

Note that the name of the class comes together with the name of the module the

class is defined in. By default, the module name is the same as the file name, a default

that can be changed with a module declaration (§ 11.1.8 on page 348).

6.8.2 size_t toHash()

This returns a hash of the object as an unsigned integral value (32 bits on 32-bit ma-

chines, 64 bits on 64-bit machines). By default, the hash is computed by using the bit-

wise representation of the object. The hash value is a concise but inexact digest of the

object. One important requirement is consistency: If toHash is called twice against a

reference without an intervening change to the state of the object, it should return the

same value. Also, the hashes of two equal objects must be equal, and the hash values of

two distinct (non-equal) objects are unlikely to be equal. The next section discusses in

detail how object equality is defined.

6.8.3 bool opEquals(Object rhs)

This returns true if this considers that rhs is equal to it. This odd formulation is in-

tentional. Experience with Java’s similar function equals has shown that there are some

subtle issues related to defining equality in the presence of inheritance, for which rea-

son D approaches the problem in a relatively elaborate manner.

First off, one notion of equality for objects already exists: when you compare two ref-

erences to class objects a1 and a2 by using the expression a1 is a2 (§ 2.3.4.3 on page 48),

you get true if and only if a1 and a2 refer to the same object, just as in Figure 6.1 on

page 177. This notion of object equality is sensible, but too restrictive to be useful. Of-

ten, two actually distinct objects should be considered equal if they hold the same state.

In D, logical equality is assessed by using the == and != operators. Here’s how they work.

206 Chapter 6. Classes. Object-Oriented Style

Let’s say you write ‹lhs› == ‹rhs› for expressions ‹lhs› and ‹rhs›. Then, if at least

one of ‹lhs› and ‹rhs› has a user-defined type, the compiler rewrites the compari-

son as object.opEquals(‹lhs›, ‹rhs›). Similarly, ‹lhs› != ‹rhs› is rewritten as !ob-

ject.opEquals(‹lhs›, ‹rhs›). Recall from earlier in this section that object is a core

module defined by your D implementation and implicitly imported in any module that

you build. So the comparisons are rewritten into calls to a free function provided by your

implementation and residing in module object.

The equality relation between objects is expected to obey certain invariants, and ob-

ject.opEquals(‹lhs›, ‹rhs›) goes a long way toward ensuring correctness. First, null

referencesmust compare equal. Then, for any three non-null references x, y, and z, the

following assertions must hold true:

// The null reference is singular; no non-null object equals null

assert(x != null);

// Reflexivity

assert(x == x);

// Symmetry

assert((x == y) == (y == x));

// Transitivity

if (x == y && y == z) assert(x == z);

// Relationship with toHash

if (x == y) assert(x.toHash() == y.toHash());

A more subtle requirement of opEquals is consistency: evaluating equality twice

against the same references without an intervening mutation to the underlying objects

must return the same result.

The typical implementation of object.opEquals eliminates a few simple or degen-

erate cases and then defers to the member version. Here’s what object.opEqualsmay

look like:

// Inside system module object.d

bool opEquals(Object lhs, Object rhs) {

// If aliased to the same object or both null => equal

if (lhs is rhs) return true;

// If either is null => non-equal

if (lhs is null || rhs is null) return false;

// If same exact type => one call to method opEquals

if (typeid(lhs) == typeid(rhs)) return lhs.opEquals(rhs);

// General case => symmetric calls to method opEquals

return lhs.opEquals(rhs) && rhs.opEquals(lhs);

}

6.8. One Root to Rule Them All 207

First, if the two references refer to the same object or are both null, the result is triv-

ially true (ensuring reflexivity). Then, once it is established that the objects are distinct,

if one of them is null, the comparison result is false (ensuring singularity of null). The

third test checks whether the two objects have exactly the same type and, if they do, de-

fers to lhs.opEquals(rhs). And a more interesting part is the double evaluation on the

last line. Why isn’t one call enough?

Recall the initial—and slightly cryptic—description of the opEquals method: “re-

turns true if this considers that rhs is equal to it.” The definition cares only about

this but does not gauge any opinion rhs may have. To get the complete agreement, a

handshake must take place—each of the two objects must respond affirmatively to the

question: Do you consider that object your equal? Disagreements about equality may

appear to be only an academic problem, but they are quite common in the presence

of inheritance, as pointed out by Joshua Bloch in his book Effective Java [9] and subse-

quently by Tal Cohen in an article [17]. Let’s restate that argument.

Getting back to an example related to graphical user interfaces, consider that you

define a graphical widget that could sit on a window:

class Rectangle { ... }

class Window { ... }

class Widget {

private Window parent;

private Rectangle position;

... // Widget-specific functions

}

Then you define a class TextWidget, which is a widget that displays some text.

class TextWidget : Widget {

private string text;

...

}

Howdowe implement opEquals for these two classes? As far as Widget is concerned,

another Widget that has the same state is equal:

// Inside class Widget

override bool opEquals(Object rhs) {

// The other must be a Widget

auto that = cast(Widget) rhs;

if (!that) return false;

// Compare all state

return parent == that.parent

&& position == that.position;

}

208 Chapter 6. Classes. Object-Oriented Style

The expression cast(Widget) rhs attempts to recover the Widget from rhs. If rhs is

null or rhs’s actual, dynamic type is not Widget or a subclass thereof, the cast expres-

sion returns null.

The TextWidget class has a more discriminating notion of equality because the

right-hand side of the comparison must also be a TextWidget and carry the same text.

// Inside class TextWidget

override bool opEquals(Object rhs) {

// The other must be a TextWidget

auto that = cast(TextWidget) rhs;

if (!that) return false;

// Compare all relevant state

return super.opEquals(that) && text == that.text;

}

Now consider a TextWidget tw superimposed on a Widget w with the same position

and parent window. As far as w is concerned, tw is equal to it. But from tw’s viewpoint,

there is no equality because w is not a TextWidget. If we accepted that w == tw but tw

!= w, that would break reflexivity of the equality operator. To restore reflexivity, let’s

consider making TextWiget less strict: inside TextWidget.opEquals, if comparison is

against a Widget that is not a TextWidget, the comparison just agrees to gowith Widget’s

notion of equality. The implementation would look like this:

// Alternate TextWidget.opEquals -- BROKEN

override bool opEquals(Object rhs) {

// The other must be at least a Widget

auto that = cast(Widget) rhs;

if (!that) return false;

// Do they compare equal as Widgets? If not, we’re done

if (!super.opEquals(that)) return false;

// Is it a TextWidget?

auto that2 = cast(TextWidget) rhs;

// If not, we’re done comparing with success

if (!that2) return true;

// Compare as TextWidgets

return text == that.text;

}

Alas, TextWidget’s attempts at being accommodating are ill advised. The problem is

that now transitivity of comparison is broken: it is easy to create two TextWidgets tw1

and tw2 that are different (by containing different texts) but at the same time equal with

a simple Widget object w. That would create a situation where tw1 == w and tw2 == w,

but tw1 != tw2.

6.8. One Root to Rule Them All 209

So in the general case, comparison must be carried out both ways—each side of

the comparison must agree on equality. The good news is that the free function ob-

ject.opEquals(Object, Object) avoids the handshake whenever the two involved ob-

jects have the same exact type, and even any other call in a few other cases.

6.8.4 int opCmp(Object rhs)

This implements a three-way ordering comparison, which is needed for using objects as

keys in associative arrays. It returns an unspecified negative number if this is less than

rhs, an unspecified positive number if rhs is less than this, and 0 if this is considered

unorderedwith rhs. Similarly to opEquals, opCmp is seldom called explicitly. Most of the

time, you invoke it implicitly by using one of a < b, a <= b, a > b, and a >= b.

The rewrite follows a protocol similar to opEquals, by using a global object.opCmp

definition that intermediates communication between the two involved objects. For

each of the operators <, <=, >, and >=, the D compiler rewrites the expression a ‹op› b as

object.opCmp(a, b) ‹op› 0. For example, a < b becomes object.opCmp(a, b) < 0.

Implementing opCmp is optional. The default implementation Object.opCmp throws

an exception. In case you do implement it, opCmpmust be a “strict weak order,” that is it

must satisfy the following invariants for any non-null references x, y, and z.

// 1. Reflexivity

assert(x.opCmp(x) == 0);

// 2. Transitivity of sign

if (x.opCmp(y) < 0 && y.opCmp(z) < 0) assert(x.opCmp(z) < 0);

// 3. Transitivity of equality with zero

if ((x.opCmp(y) == 0 && y.opCmp(z) == 0) assert(x.opCmp(z) == 0);

The rules abovemay seem a bit odd because they express axioms in terms of the less

familiar notion of three-way comparison. If we rewrite them in terms of <, we obtain the

familiar properties of strict weak ordering in mathematics:

// 1. Irreflexivity of ‘<’
assert(!(x < x));

// 2. Transitivity of ‘<’
if (x < y && y < z) assert(x < z);

// 3. Transitivity of ‘!(x < y) && !(y < x)’

if (!(x < y) && !(y < x) && !(y < z) && !(z < y))

assert(!(x < z) && !(z < x));

The third condition is necessary for making < a strict weak ordering. Without it, <

is called a partial order. You might get away with a partial order, but only for restricted

uses; most interesting algorithms require a strict weak ordering. If you want to define a

partial order, you’re better off giving up all syntactic sugar and defining your ownnamed

functions distinct from opCmp.

