Algebra With Types
Meta via Digitalmars-d-learn
digitalmars-d-learn at puremagic.com
Fri Apr 21 13:49:27 PDT 2017
On Friday, 21 April 2017 at 18:54:38 UTC, David Sanders wrote:
> Thank-you for your input. With your help, I was able to figure
> out number whether a type is an instantiation of
> std.variant.Algebraic.
>
> Now, I need help on concatenating Template Sequence Parameters.
> See the block comments below.
>
> Thanks,
> Dave
>
> import std.stdio;
> import std.variant;
>
> alias Zero = void;
>
> struct One{};
>
> struct Sum(T, U) {
> static if (is(T == Zero)) {
> static if (is(U == Zero)) {
> alias type = Zero;
> }
> else {
> alias type = U;
> }
> } else static if (is(U == Zero)) {
> alias type = T;
> } else static if (is(T _ == VariantN!V, V...)) {
> static if(is(U _ == VariantN!W, W...)) {
> alias type = Algebraic!/* Concatenate V[1..$] with U[1..$] */
> } else {
> alias type = Algebraic!/* Concatenate V[1..$] with U */
> }
> } else static if(is(U _ == VariantN!V, V...)) {
> alias type = Algebraic!/* Concatenate T with V[1..$] */
> } else {
> alias type = Algebraic!(T, U);
> }
> }
>
> void main() {
> static assert (is(Zero == Sum!(Zero, Zero).type));
> static assert (is(One == Sum!(Zero, One).type));
> static assert (is(One == Sum!(One, Zero).type));
> static assert (is(Algebraic!(One, One) == Sum!(One,
> One).type));
> static assert (is(Algebraic!(One, One, One) == Sum!(Sum!(One,
> One).type, One).type));
> }
As an aside, there's a less convoluted way to do type-level
arithmetic which is IMO also more concise and looks nicer. You
don't have to mess around with Algebraic at all:
struct Zero;
struct Succ(N);
alias One = Succ!Zero;
alias Pred(N: Zero) = Zero;
alias Pred(N: Succ!Np, Np) = Np;
alias Add(N1: Zero, N2: Zero) = Zero;
alias Add(N1, N2: Zero) = N1;
alias Add(N1: Zero, N2) = N2;
alias Add(N1, N2) = Add!(Succ!N1, Pred!N2);
void main()
{
static assert(is(Pred!One == Zero));
static assert(is(Succ!One == Succ!(Succ!Zero)));
static assert(is(Add!(Zero, Zero) == Zero));
static assert(is(Add!(Zero, One) == One));
static assert(is(Add!(One, Zero) == One));
static assert(is(Add!(One, One) == Succ!(Succ!(Zero))));
alias Two = Succ!One;
static assert(is(Add!(One, One) == Two));
static assert(is(Add!(One, Two) == Succ!(Succ!(Succ!Zero))));
static assert(is(Sub!(Zero, Zero) == Zero));
static assert(is(Sub!(One, Zero) == One));
static assert(is(Sub!(Zero, One) == Zero));
static assert(is(Sub!(Two, One) == One));
static assert(is(Sub!(One, Two) == Zero));
}
Implementing Mul, Div and the integer set is an exercise left to
the reader.
More information about the Digitalmars-d-learn
mailing list