Benchmarking sigmoid function between C and D
Arun Chandrasekaran
aruncxy at gmail.com
Sat Apr 7 18:53:57 UTC 2018
What am I doing wrong here that makes the D equivalent 2.5 times
slower than it's C equivalent?
Compilers used:
LDC2: LDC - the LLVM D compiler (1.8.0)
GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609
11:36:39 ~/code/c/test2$ ldc2 sigmoid.d -O5 && ./sigmoid
Max deviation is 0.001664
10^7 iterations using sigmoid1: 308 ms
10^7 iterations using sigmoid2: 30 ms
11:36:55 ~/code/c/test2
$ gcc sigmoid.c -o sigmoid-c -O3 -lm 2>/dev/null && ./sigmoid-c
Max deviation is 0.001664
10^7 iterations using sigmoid1: 134 ms
10^7 iterations using sigmoid2: 29 ms
11:37:10 ~/code/c/test2
$
C code, taken from
https://stackoverflow.com/questions/412019/math-optimization-in-c-sharp#412176:
```
#include <math.h>
#include <stdio.h>
#include <time.h>
#define SCALE 320.0f
#define RESOLUTION 2047
#define MIN -RESOLUTION / SCALE
#define MAX RESOLUTION / SCALE
static float sigmoid_lut[RESOLUTION + 1];
void init_sigmoid_lut(void) {
int i;
for (i = 0; i < RESOLUTION + 1; i++) {
sigmoid_lut[i] = (1.0 / (1.0 + exp(-i / SCALE)));
}
}
static float sigmoid1(const float value) {
return (1.0f / (1.0f + expf(-value)));
}
static float sigmoid2(const float value) {
if (value <= MIN) return 0.0f;
if (value >= MAX) return 1.0f;
if (value >= 0) return sigmoid_lut[(int)(value * SCALE +
0.5f)];
return 1.0f-sigmoid_lut[(int)(-value * SCALE + 0.5f)];
}
float test_error() {
float x;
float emax = 0.0;
for (x = -10.0f; x < 10.0f; x+=0.00001f) {
float v0 = sigmoid1(x);
float v1 = sigmoid2(x);
float error = fabsf(v1 - v0);
if (error > emax) { emax = error; }
}
return emax;
}
int sigmoid1_perf() {
clock_t t0, t1;
int i;
float x, y = 0.0f;
t0 = clock();
for (i = 0; i < 10; i++) {
for (x = -5.0f; x <= 5.0f; x+=0.00001f) {
y = sigmoid1(x);
}
}
t1 = clock();
printf("", y); /* To avoid sigmoidX() calls being optimized
away */
return (t1 - t0) / (CLOCKS_PER_SEC / 1000);
}
int sigmoid2_perf() {
clock_t t0, t1;
int i;
float x, y = 0.0f;
t0 = clock();
for (i = 0; i < 10; i++) {
for (x = -5.0f; x <= 5.0f; x+=0.00001f) {
y = sigmoid2(x);
}
}
t1 = clock();
printf("", y); /* To avoid sigmoidX() calls being optimized
away */
return (t1 - t0) / (CLOCKS_PER_SEC / 1000);
}
int main(void) {
init_sigmoid_lut();
printf("Max deviation is %0.6f\n", test_error());
printf("10^7 iterations using sigmoid1: %d ms\n",
sigmoid1_perf());
printf("10^7 iterations using sigmoid2: %d ms\n",
sigmoid2_perf());
return 0;
}
```
D equivalent:
```
module sigmoid;
import std.stdio;
import std.math;
import std.datetime.stopwatch;
enum SCALE = 320.0f;
enum RESOLUTION = 2047;
enum MIN = -RESOLUTION / SCALE;
enum MAX = RESOLUTION / SCALE;
float[RESOLUTION + 1] sigmoid_lut;
void init_sigmoid_lut() {
int i;
for (i = 0; i < RESOLUTION + 1; i++) {
sigmoid_lut[i] = (1.0 / (1.0 + exp(-i / SCALE)));
}
}
private float sigmoid1(const float value) {
return (1.0f / (1.0f + exp(-value)));
}
private float sigmoid2(const float value) {
if (value <= MIN) return 0.0f;
if (value >= MAX) return 1.0f;
if (value >= 0) return sigmoid_lut[cast(int)(value * SCALE +
0.5f)];
return 1.0f-sigmoid_lut[cast(int)(-value * SCALE + 0.5f)];
}
private float test_error() {
float x;
float emax = 0.0;
for (x = -10.0f; x < 10.0f; x+=0.00001f) {
float v0 = sigmoid1(x);
float v1 = sigmoid2(x);
float error = fabs(v1 - v0);
if (error > emax) { emax = error; }
}
return emax;
}
private auto sigmoid1_perf() {
auto sw = StopWatch(AutoStart.yes);
int i;
float x, y = 0.0f;
for (i = 0; i < 10; i++) {
for (x = -5.0f; x <= 5.0f; x+=0.00001f) {
y = sigmoid1(x);
}
}
return sw.peek.total!"msecs";
}
private auto sigmoid2_perf() {
auto sw = StopWatch(AutoStart.yes);
int i;
float x, y = 0.0f;
for (i = 0; i < 10; i++) {
for (x = -5.0f; x <= 5.0f; x+=0.00001f) {
y = sigmoid2(x);
}
}
return sw.peek.total!"msecs";
}
int main() {
init_sigmoid_lut();
writefln("Max deviation is %0.6f", test_error());
writefln("10^7 iterations using sigmoid1: %s ms",
sigmoid1_perf());
writefln("10^7 iterations using sigmoid2: %s ms",
sigmoid2_perf());
return 0;
}
```
More information about the Digitalmars-d-learn
mailing list