About 0^^0
Don
nospam at nospam.com
Thu Dec 10 00:17:01 PST 2009
Bill Baxter wrote:
> Found this link about 0^^0:
> http://mathforum.org/dr.math/faq/faq.0.to.0.power.html
>
> I think this explains pretty well why Wolfram is justified in saying
> 0^^0 is indeterminate, but a PL like D is perfectly justified in
> saying it's 1.
>
> In particular the article asserts: "Consensus has recently been built
> around setting the value of 0^0 = 1"
>
> --bb
Yeah. It's driven by pragmatism. Setting 0^^0 = 1 is highly useful,
especially for the binomial theorem (Knuth says "it *has* to be 1"!)
There are a few contexts where setting 0^^0 = 1 is problematic. But
AFAIK none of them are relevant for int^^int. And pow() already sets
0.0^^0.0 = 1.0. So the decision has already been made.
Since Mathematica has such an emphasis on symbolic algebra it's not as
clear for them. But it's still interesting that Mathematica makes x^^0
== 1, regardless of the value of x, yet makes 0^^0 undefined.
More information about the Digitalmars-d
mailing list