A simple sieve in Phobos?
bearophile
bearophileHUGS at lycos.com
Tue Mar 18 07:23:30 PDT 2014
There is a efficient Sieve implementation in C++ here:
http://code.activestate.com/recipes/577966-even-faster-prime-generator/?in=lang-cpp
There are of course far faster implementations, but its
performance is not bad, while being still simple and quite short.
A D implementation (it's not a final version because the global
enums should be removed and replaced with run-time variables or
template arguments. And something different from just counting
must be added):
import std.stdio, std.algorithm, std.typecons;
enum uint MAX_N = 1_000_000_000U;
enum uint RT_MAX_N = 32_000; // square of max prime under this
limit should exceed MAX_N.
enum uint B_SIZE = 20_000; // not sure what optimal value for
this is;
// currently must avoid overflow
when squared.
// mod 30, (odd) primes have remainders 1,7,11,13,17,19,23,29.
// e.g. start with mark[B_SIZE/30]
// and offset[] = {1, 7, 11, ...}
// then mark[i] corresponds to 30 * (i / 8) + b - 1 + offset[i %
8].
Tuple!(uint, size_t, uint) calcPrimes() pure nothrow {
// Assumes p, b odd and p * p won't overflow.
static void crossOut(in uint p, in uint b, bool[] mark)
pure nothrow {
uint si = (p - (b % p)) % p;
if (si & 1)
si += p;
if (p ^^ 2 > b)
si = si.max(p ^^ 2 - b);
for (uint i = si / 2; i < B_SIZE / 2; i += p)
mark[i] = true;
}
uint pCount = 1; uint lastP = 2;
// Do something with first prime (2) here.
uint[] smallP = [2];
bool[B_SIZE / 2] mark = false;
foreach (immutable uint i; 1 .. B_SIZE / 2) {
if (!mark[i]) {
pCount++; lastP = 2 * i + 1;
// Do something with lastP here.
smallP ~= lastP;
if (lastP ^^ 2 <= B_SIZE)
crossOut(2 * i + 1, 1, mark);
} else
mark[i] = false;
}
for (uint b = 1 + B_SIZE; b < MAX_N; b += B_SIZE) {
for (uint i = 1; smallP[i] ^^ 2 < b + B_SIZE; ++i)
crossOut(smallP[i], b, mark);
foreach (immutable uint i; 0 .. B_SIZE / 2) {
if (!mark[i]) {
pCount++; lastP = 2 * i + b;
// Do something with lastP here.
if (lastP <= RT_MAX_N)
smallP ~= lastP;
} else
mark[i] = false;
}
}
return tuple(pCount, smallP.length, lastP);
}
void main() {
immutable result = calcPrimes;
writeln("Found ", result[0], " primes in total.");
writeln("Recorded ", result[1], " small primes, up to ",
RT_MAX_N);
writeln("Last prime found was ", result[2]);
}
Is it a good idea to add a simple but reasonably fast Sieve
implementation to Phobos? I have needed a prime numbers lazy
range, and a isPrime() function numerous times. (And as for
std.numeric.fft, people that need even more performance will use
code outside Phobos).
Bye,
bearophile
More information about the Digitalmars-d
mailing list